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Abstract 
The general theory developed by Michalski [Acta 
Cryst. (1988), A44, 640-649] has been applied to the 
cases of hexagonal and rhombohedral structures. The 
symbols of stacking faults based on Zhdanov's sym- 
bols of local structure near the faults have been intro- 
duced and assigned to the formal subscripts j, k used 
in general theory. On this basis the regularities, 
according to which the faults with different subscripts 
j, k have the same structures, have been characterized. 
Then these regularities have been taken into 
consideration in the derivation of expressions for 
measurable parameters of changes (caused by faults) 
in the X-ray intensity distribution. The results 
obtained for structures 2H, 4H, 6H(33), 8H(44), 
10H(55), 12H(66), 3C, 9R(12)3, 12R(13)3 and 
15R(23)3 are given. Some results are compared 
with published data. The physical meaning of the 
assumption of small values of fault probabilities is 
discussed. 

I. Introduction 
Warren (1959) has indicated that two types of stacking 
faults can occur in the simplest case of hexagonal 
polytypes with 2H structure. The probability of 
occurrence of the so-called deformation fault with 
the layer sequence . . .  A B A B : C A C A . . .  is denoted 
by a and of the growth fault with the layer sequence 
. . .  A B A B :  C B C B . . .  by /3. Warren (1959) showed 
that there are no X-ray diffraction peak displacements 
and no peak asymmetry as a result of either deforma- 
tion or growth faults, but peak broadening does 
occur. 

In the case of hexagonal polytypes with 4H struc- 
ture Prasad & Lele (1971) distinguished the following 
types of possible faults: intrinsic c, h, 2c, 2h, 3c, 3h, 
ch and extrinsic 4c and cch. The probabilities of 
occurrence of these faults have been denoted by the 
above symbols written as subscripts to a. The 
integrated intensity, peak shifts, peak broadenings 
and peak asymmetry have been chosen as measurable 
parameters of changes in the X-ray intensity distribu- 
tion caused by the faults. The seven independent 
combinations of fault probabilities evaluated by 

Prasad & Lele (1971) show the influence of all 
possible faults on the above parameters. 

For the case of6H(33) polytypic structures Pandey 
& Krishna (1976) denoted the probabilities of occur- 
rence of the intrinsic faults by symbols a~. In this 
notation the subscripts i are the successive numbers, 
from 1 to 18, assigned to particular faults. Pandey & 
Krishna (1976) summarized the diffraction effects in 
the faulted 6H(33) structure as follows: (i) reflexions 
with H -  K # 3N are unaffected by faulting; (ii) all 
reflexions with H - K = 3 N are broadened as a result 
of faulting; (iii) there is change in the intensity of 
the peak maxima; and (iv) reflexions with H -  K # 
3N, L = 6 M + I  and L = 6 M + 2  also exhibit peak 
shifts. 

A description of the influence of the faults on the 
X-ray diffraction pattern for the case of the 8H(44) 
polytypic structure has been given by Michalski, 
Demianiuk, Kaczmarek & Zhmija (1981). 

For hexagonal polytypes, with the period of iden- 
tity more than 8, there is no earlier description of the 
influence of the faults on X-ray diffraction patterns. 

In the simplest case of rhombohedral structure, i.e. 
that of the 3C structure, the symbols a and/3 were 
sufficient for fault notation. Following Warren (1959) 
the probability of occurrence of single deformation 
faults is denoted by a and twin or growth faults by 
/3. The deformation faults give rise to the shifts, broad- 
enings and asymmetry of reciprocal-lattice points, 
whereas the twin faults produce only the broadenings 
(Warren, 1959). 

In the case of the 9R(12)3 structure, symbols c, h, 
hc, hhc and 3c have been used by Lele (1974a) for 
notation of different stacking faults. From the process 
of fault formation, the first three have been called 
growth faults and the next two deformation faults. 
From the description of X-ray diffraction given by 
Lele (1974a) all the faults exert some influence on 
the width of reflexions. The integrated intensity and 
peak asymmetry are influenced by h, hc, hhc and 3c 
faults, whereas peak shifts are due to c, hhc and 3c 
faults. 

In the case of 12R(13)3 structures Lele (1974b) 
used the symbols hhc, c, h, cch, 4h, 2hc and 4c for 
notation of different stacking faults. The differenti- 
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ation of faults is introduced as for 9R (12)3 structures. 
The first four symbols refer to growth faults and the 
next three to deformation faults. All the faults 
influence the width of reflexions. The integrated 
intensity and peak asymmetry are influenced by h, 
cch, 4h, 2ch and 4c faults. 

It can be seen that only some types of faults 
in 9R(12)3 and 12R(13)3 structures have been 
considered by Lele (1974a, b). For rhombohedral 
polytypes with a longer period of identity the 
description of X-ray diffraction has not yet been 
published. 

2. Structures of stacking faults in hexagonal and 
rhombohedral polytypes 

For synonymous and uniform notation of the faulti- 
ness of structures, we shall use Zhdanov symbols of 
crystal structure near the faults. This notation con- 
tains in brackets the numbers of the Zhdanov symbol, 
which are different from the numbers occurring on 
the same positions in the symbol for a perfect struc- 
ture. Moreover, the last number of the Zhdanov sym- 
bol, which is not changed as a result of faults, exists 
before the bracket. The notation for twinning fauKs 
also contains the first number of the Zhdanov symbol 
which is after the bracket. In the nH(~) type of 
structure the Zhdanov symbols contain only one 
repeated number. In these cases, for notation of faults, 
it is sufficient to give only the numbers occurring in 
brackets. 

In order to illustrate the method of formation of 
the Zhdanov symbols for faults let us consider in 
detail two cases of faults, in 6H(33) and in 9R(12)3 
structures. 

The perfect sequences of layers in the 6H(33) struc- 
ture are given below: 

A1 B2C3A4CsB6, 

B1C2A3B4A5 C6, 

CIA2B3C4BsA6. 

If the faulted layers (forming the faults) with sub- 
scripts 1 (e.g. C~) occur after a layer with subscript 
1 (e.g. A~) instead of the perfect layer with subscript 
2 (e.g. B2), then we obtain the following sequence 
near the fault: 

+ . . . .  + + + - -  _ _ 

• . .  A-~B-~C3 A4 C5 B6 A1 : C1 A2 B3 C4 B5 A6 . . . .  

(1) 

On the basis of (1) we can see that the number of 
' - '  signs in the Hhgg symbol for this sequence 
increases by one. Hence the number (4) occurs in the 
Zhdanov symbol of this fault. 

Table 1. Zhdanov symbols for single non-twinning 
faults for particular values of subscripts j, k 

(a) Structure 4H 
J 

k 1 2 3 4 
l (3) (ll) (5) (13) 
2 (31) (111) (4) (1) 
3 (5) (13) (3) (11) 
4 (4) (1) (31) (l l l)  

(b) Structure 9R(12)3 

k 

1 
2 
3 
4 
5 
6 
7 
8 
9 

J 
1 2 3 4 5 6 7 8 9 

1(3) 2(3) 1(12) 1(3) 2(3) 1(12) 1(3) 2(3) 1(12) 
1(5) 2(2) l(1) 1(5) 2(2) l ( l )  1(5) 2(2) l(1) 
1(4) 2(21) 1(111) 1(4) 2(21) 1(111) 1(4) 2(21) l ( l l l )  
1(3) 2(3) 1(12) 1(3) 2(3) 1(12) 1(3) 2(3) l(12) 
1(5) 2(2) 1(1) 1(5) 2(2) 1(1) 1(5) 2(2) 1(1) 
1(4) 2(21) l ( l l l )  1(4) 2(21) l ( l l l )  1(4) 2(21) l ( l l l )  
1(3) 2(3) 1(12) 1(3) 2(3) 1(12) 1(3) 2(3) 1(12) 
1(5) 2(2) 1(1) 1(5) 2(2) l(1) 1(5) 2(2) l(1) 
1(4) 2(21) l ( l l l )  1(4) 2(21) l ( l l l )  1(4) 2(21) 1(111) 

The perfect sequences of layers in 9R(12)3 struc- 
tures are 

A1 B2A3 C4A5 C6B7 C8B9,  

B1 C2 B3A4 B5A6 C7A8 C9, 

C1A2 C3B4 CsB6A7BsA9. 

If a faulted layer with subscript 2 (e.g. C2) occurs 
after a layer with subscript 2 (e.g. B2) instead of a 
perfect layer with subscript 3 (e.g. A3) then we obtain 
the following sequence near the fault: 

- -  + - -  _ + + 

• . .  C6 B7 C8 B9 A1 B2 • C ~ B ; A ~ B - ~ A 6  . . . .  (2) 

From (2) it is clear that the structure near the fault 
can be described by the Zhdanov symbol 2(2). 

For a hexagonal structure, due to 63 s c r e w  axes, 
the Zhdanov symbol consists of an odd set of numbers 
repeated twice. Hence the set of n2/2 types of faults 
are also repeated twice. Specific regularities exist in 
these repetitions. In order to illustrate these regu- 
larities, the Zhdanov symbols corresponding to all 
subscripts j, k for 4H structures are given in Table 
l(a) .  From this table we can find that the Zhdanov 
symbols of faults are the same for pairs of subscripts 
(j, k) and ( j+n/2,  k+n/2).  Thus for hexagonal 
polytypes it is sufficient to give the Zhdanov symbols 
of n2/2 faults. 

The Zhdanov symbols corresponding to all the 
pairs of subscripts j, k for the non-twinning faults in 
9R(12)3 rhombohedral structures are given in Table 
l(b). The group of faults denoted by subscripts j, 
k = 1, 2 , . . . ,  n/3 are repeated nine times in this table. 
This property is characteristic of all rhombohedral 
polytypes because the Zhdanov symbols for them 
consist of sets of numbers repeated three times. 



652 POLYTYPIC CRYSTALS C O N T A I N I N G  SINGLE STACKING FAULTS. II 

It can be shown that pairs of faults, which are 
enantiomorphous with others, exist among the n2/2 
types of faults in hexagonal structures and n2/9 types 
of faults in rhombohedral structures. Such enan- 
tiomorphous pairs of faults give identical X-ray 
diffraction patterns by the rotation crystal method. 
Therefore we have to consider these faults as the same 
fault twice repeated, as was done by Pandey & 
Krishna (1976) for the 6H(33) structure. Thus the 
number of really different types of faults is less than 
n2/2 in hexagonal structures and n2/9 in rhombohe- 
dral structures. As an example let us consider the 
faults in nH(~ ~)-type structures. The faults denoted 
by the Zhdanov symbols ( n + l ) ,  ( n ) , . . . , ( ~ + l )  
which occur after layers with subscripts j = 1 and the 
faults denoted by the Zhdanov symbols ( j - 1 ) ,  ( j -  
1, j - 1) and (j  - 1, 1, j - 1) which occur after layers 
with subscripts j = 2, 3 , . . . ,  ~ are non-repeated. The 
full number of these faults is 

[ ( n 1 2 + l ) + 3 ( n / 2 - 1 ) ] = 2 n - 2 .  (3) 

tures. Let us denote the probability of occurrence of 
this type of fault by Ot(jk). 

In order to express the measurable parameters of 
changes in the intensity distribution by probabilities 
a(jk), we shall apply the general theory developed in 
paper I (Michalski, 1988). 

From the symmetry of the H~igg symbols one can 
write the following relationship between the factors 
s j :  

for hexagonal structures, 

Sj+,,/2= S* ; (7) 

for rhombohedrai structures, 

sj = s ,+ . /3  = s j+ , . / 3 .  (8) 

Combining (7) and (8) with the definition of the 
factors Sjk [equation (44) of paper I] we obtain: 

for hexagonal sttructures, 

Sj+n/2, k+n/2 = S ~ ,  ( 9 )  

From among the remaining [n (n /2 ) -  (2n - 2 ) ]  types 
of faults only half are different in reality. Thus the 
number of all possible different types of faults in 
nH (~ 9) structures is 

½ [ n ( n 1 2 ) - ( 2 n - 2 ) ] + ( 2 n - 2 ) = ( n 2 / 4 ) + n - 1 .  (4) 

For individual polytypic structures we obtain the 
following numbers of the possible types of faults: 
seven for 4H, 14 for 6H(33), 23 for 8H(44), 34 for 
10H(55), 47 for 12H(66) etc. 

Similarly, in the 9R(12)3 structure, there exist the 
following pairs of enantiomorphous faults: 2(21)- 
1(12), 1(4)2-2(4)1, 1(3)2-2(3)1 and 1(31)1-1(13)1. 

3. The parameters of changes in the intensity 
distribution 

From the previous section it is known that in 
hexagonal structures the faults denoted by pairs of 
subscripts 

( j ,k)  and ( j+n/2 ,  k+n/2)  (5) 

and in the rhombohedral structures faults denoted by 

( j ,k) ,  ( j+n/3 ,  k), ( j+2n/3,  k), 

(j, k + n/3),  (j + n/3, k + n/3),  

( j+2n/3 ,  k+n/3) ,  ( j ,k+2n/3) ,  

( j+n /3 ,  k+2n/3) ,  ( j+2n/3,  k+2n/3)  

(6) 

have the same sequences of layers. Since these faults 
are indistinguishable, we ought to consider them as 
one type of fault repeated twice in hexagonal struc- 
tures and repeated nine times in rhombohedral struc- 

where S~ means the complex conjugate of Sjk ; 
for rhombohedral structures, 

in the case of non-twinning faults 

Sjk = Sj+n/3, k+n/3 = Sj-r2n/3, k ÷ 2 n / 3 ,  

n/3 
Sj+./3. k--- Sj+2./3. k+,,/3 = Sj.a+2./3--- Sja I-[ S,, (10) 

i = l  

n/3 
s , +  ~ . / . , ,  ~ = s j ,  ~ + . / . ,  = s j + , / . , ,  ~ + ~ , / . ,  = s j~  I I  s*, ; 

i = l  

in the case of twinning faults 

sj~ = s j ,~  +./_, = s j ,~  +~ . /~ ,  

hi3 

s j+. /3  k = s j + . / 3 k + . 1 3  = s j + ° .  ~+2°/3 = sj~ I1 s , ,  
i = l  

(11) 

hi3 
s j + ~ ° . , ~  = s j+2 . /3 ,~+. /~  = s j+~° / . , ,k+~° /~= s ,~  l l  s*, . 

i = 1  

Substituting (9) into the general theory we obtain 
the following characteristic equations for hexagonal 
structures: 

when k -<j, 

X n - Ol(jk)(Sjk + S~)X n+k-j-I + 20l(jk)- 1 ~ O; (12) 

when k > j ,  

X"--a(jk>(Sjk + S~)Xk-J-l +2a(jk>--l=O. (13) 

Because Re(Sjk+S~k)--2 Re Sjk, (12) and (13) differ 
from equations (22) and (23) of the general theory 
only in the occurrence of the symbols 2aUk ) instead 
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of Oljk. We can prove that the terms J°(m) of the 
boundary conditions for hexagonal structures are 
real. Thus the final formulae for Ah3, AW and /max 
in hexagonal structures can be obtained by substitut- 
ing the 2Ce<jk) instead of Oljk in the general formulae 
[equations (43), (48), (50) and (52) of paper I]. 

Similarly using (10) and (11) we obtain the follow- 
ing characteristic equations for rhombohedral struc- 
tures: 

in the case of non-twinning faults, 

The influence of stacking faults on the intensity 
peak maxima in rhombohedral polytypes is expressed 
by equation (52) of paper I, because the terms J°(m) 
in the boundary conditions are complex. 

Moreover, it can be shown that for enantiomor- 
phous pairs of faults t e rms 20t<jk) instead of Ol(jk) ought 
to be substituted in the final expressions for 'Ah3, Aw 
and /max- 

n/3 n/~ ) 
xn--3Ol(jk)Sjk xn+k-j-I  1+ 1-I1 SiX-n/3-Jt - Si xn/3 

i= i= 
+9C~<jk)--I=O, for k<_j, (14) 

X"--3~<jk>SjkX k-j-~ 1 + l-I SIX-"~3+ 1] SiX ~/3 
i=l i=l 

+9a<jk>--l=O, for k>j; (15) 

in the case of twinning faults, 

X" + 9a<jk> -- 1 = O. (16) 

From the characteristic equations (14), (15) and 
(16) we can find the coefficients aj and Dr,. After 
substituting them in the general equations for Ah3 
and Aw [equations (42) and (47) of paper I] and 
some rearrangements we obtain finally: 

in the case of non-twinning faults, 

Ah3(h3, a<.ik>)=a<jk>(9/47r) sin[21(zr/n)h3] (17) 

4. Results of calculations for 2H, 4H, 6H(33), 
8H(44), 10H(55), 12H(66), 3C, 9R(12)3, 12R(13)3 

and 15R(23)3 structures 

In order to present the result in the shortest and most 
convenient form, we list them in Table 2. This table 
allows the shifts Ah3, broadenings Aw and changes 
in the maximum intensity of the reciprocal-lattice 
points to be expressed by the probabilities of occur- 
rence of all possible faults. To express Ah3, for 
example, by probabilities of particular faults we need 
to multiply the values from the table corresponding 
to the particular a and h 3 by the reciprocal coefficients 
which occur before Ah 3 in the heading of the table. 
In the case of faults united by the '  = '  sign we multiply 
Ah 3 and Aw and divide Imax(h3) additionally by a 
factor 2. The values of I assigned to rhombohedral 
structures for all fault types are determined by (19). 
The absence of numbers in the table for some 
peak maxima means that the peak maximum of ade- 
quate reciprocal-lattice points is unaffected by this 
fault. 

and 

Aw(h3, Ot(jk)) = a<jk>(9/27r){5--4 COS [21(Tr/n)h3] 
-sin2[21(zr/n)h3]} 1/2, (18) 

where 

k - j - 1  for S ik=l, 
n/3 

l= i - j - l - n ~ 3  for Sjk = ,,/3i=lI-I S*, 

- j - l + n / 3  for Sjk = I-I S,; 
i=1 

(19) 

in the case of twinning faults 

Ah3(h3 ,  Ot(jk) ) -- 0, 

A w ( h 3 ,  Ot(jk) ) = a<jk>(9/ 77"). 
(20) 

From (17) to (20) shifts and broadenings of 
reciprocal-lattice points may be caused by non-twin- 
ning faults whereas the twinning faults do not cause 
shifts. Broadenings for all indexes h 3 are caused by 
all types of twinning faults. 

5. Discussion 

The results obtained for shifts Ah3 and broadenings 
Aw of reciprocal-lattice points in 2H structures 
(Table 2a) are in accordance with Warren's (1959) 
results. 

The results obtained for the shifts Ah3 and broaden- 
ings Aw of reciprocal-lattice points in 4H structures 
(Table 2b) are the same as those of Prasad & Lele 
(1971), although in order to describe faultiness these 
authors have used two more faults (cch and 4c) than 
here; but these [which have Zhdanov symbols (41) 
and (6)] are not single faults. 

The full results obtained for 6H(33) structures 
• (Table 2c) are identical to those given by Pandey & 
Krishna (1976). 

For the 8H, 10H and 12H structures no comparison 
has been given because there are no corresponding 
results in earlier published papers. 

According to Warren (1959), the following relation 
for 3C structures holds: 

Ah3 (h3=+l,a)=+(3~/3/4)o~, (21) 
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Table 2. Shifts Ah3, broadenings Aw and peak maxima I,,,.x of reciprocal-lattice points for particular ajk 
probabilities 

(a) Structure 2H 
(1/ct(i))Ah3(h 3) ('n'/oqo)Aw(h3) (3a(,)/4'2)Ima,~(h3) 

h 3 h3 h3 
Z h d a n o v  

s y m b o l  o f  f a u l t  ± 1 ,  +2  ±1 ±2  ±1 ± 2  

(2) 0 1 3 9 1 
(3) 0 3 3 3 1 

(b) Structure 4H 
(2~/a(i))ah3(h3) (~/a(o)aw(h3) (a(i)/@2)Imax(h3) 

h3 h3 h3 
Z h d a n o v  

s y m b o l  o f  f au l t  4 M ±  1 4 M  ±1 ±2  4 M  ±1  ±2  

(4) 0 3 1 3 1/6 3/2 3/2 
(5) ±2 0 2 4 -- 3/4 9/8 
(I) ±I 3 2 I I/6 3/4 9/2 

(31) = (13) 0 3 3 3 I/6 I/2 3/2 
(3),(111) ±I 3 2 I I/6 3/4 9/2 

(11) 0 o 4 o - -  3/8 - -  

(c) Structure 6H(33) 
(47r/3ot(i))Ah3(h3) (2"tr/ct(o)Aw(h 3) (cqo/O2)Imax(h3) 

h3 h3 h3 
Z h d a n o v  

s y m b o l  o f  f a u l t  6 M + l  6 M + 2  +1 +2  ±3  +1 + 2  +3  

(5) ±1 :~1 3 3 6 2/3 2 4/3 
(6) 0 0 8 0 8 I / 4  -- 1 

(12)=(21)  0 0 2 6 2 1/2 1/2 2 
(7), (1) ~:1 ±1 3 3 6 2/3 2 4/3 

(22) ±2 ~:2 6 6 0 1/3 1 - -  
(14) = (41) ±2 ±2 2 6 8 I /2  1/2 1/2 

(2) ~1 ~:1 5 3 2 2/5 2 4 
(111), (42)=(24)  0 0 6 6 6 1/3 I 4/3 
(4), (211)=(112) ±1 ±1 5 3 2 2/5 2 4 

(11),(212) :;2 ±2 6 6 0 1/3 1 - -  

(f)  Structure 8H(44): peak maxima (ct(i)/~b2)lmax(h3) 
h3 

N u m b e r  8 M  8 M ± l  8 M ± 2  8 M ± 3  8 M ± 4  

1, 10 1/12 3 / 8 ( 3 - 2 4 2 )  9/4 3 /8(3+2, /2)  1/4 
2,7 - -  3 / 8 ( 1 0 - 7 4 2 )  9/8 3/8(10+7`/2)  9/16 
3,8 1/12 3 / 2 8 ( 8 - 5 4 2 )  9/8 3 /28(8+542)  9/4 

4 1/12 3 / 4 ( 3 -  242) 1/4 3/4(3 + 2,/2) 1/4 
5 ! /24  I/8(3 - 242) 3/8 1/8(3 + 242) 3/8 
6 - -  3 / 1 6 ( 3 - 2 4 2 )  - -  3 /16(3+242)  - -  

9, 14 - -  3 / 8 ( 3 - 2 4 2 )  9/16 3 /8 (3+242)  - -  
11 - -  3/8(2 - 42) 9/8 3/8(2 + 42) 9/16 

12,13 1/12 3 / 2 8 ( 1 6 - 4 2 )  9/8 3 /28(16+42)  9/4 

(g) Structure 10H(55): shifts (2zr/ati))Aha(h 3) 

N u m b e r  

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
I1 
12 
13 

14 
15 
16 
17 
18 
19 

Z h d a n o v  s y m b o l  
o f f a u l t s  1 0 M ± I  1 0 M ± 2  1 0 M ± 3  1 0 M ± 4  

(7) ±b ±a  :~a :l:b 
(8) ~:2b ±2a ±2a a:2b 

(12)=(21)  ±b : ;a  :~a ±b 
(22) :;2a ±2b a:2b ±2a  

(13) = (31), (9), (414) ±a  ~b  ±b : ;a  
(1), (24) = (42) : ;a  ±b :;b ±a  

(2) ±2b :;2a :;2a ±2a 
(16) = (61), (34) = (43) ~b  ±a  +a  :;b 

(44) ±2b ±2a :;2a :l:2b 
(26) = (62), (111), (3) ~:b :~a +a  ±b 

(36)=(63) ,  (112)=(211) ±2a ±2b ±2b ±2a 
(4) ~:a :;b :;b : ;a  

(6), (114) = (411), ±a  ±b ±b ±a  
(213)=(312) 

(1,1),  (214)= (412), (313) a:2b ~:2a ±2a ±2b 
(314) = (413) ±b :;a : ;a  ±b 

(14) = (41) 0 0 0 0 
(11),(33) 0 0 0 0 

(10), (23) = (32) 0 0 0 0 
(113)=(311).(212),  0 0 0 0 

(46) = (64) 

a = sin (~'/5), b = sin (2~r/5), c = cos (~r/5), d = cos (2~r/5). 

(d) Structure 8H(44): shifts (47r/a(o)ah3(h 3) 

Z h d a n o v  s y m b o l  

N u m b e r  o f  f a u l t s  8 M  + 1 8 M  + 2 8 M  ± 3 

1 ( 6 )  ± 2  0 : ;2  

2 (7) ~:2.,/2 ±4 ~:242 
3 (313), (12) = (21) ±42 :~2 ±,/2 
4 (13) = (31), (8) 0 0 0 
5 (53) = (35), (112) = (211) 0 0 0 
6 (22) 0 0 0 
7 (1) ±242 ~:4 ±242 
8 (9), (23) = (32) :~42 +2 : ;42 
9 (33) +4 0 :;4 

10 (2), (51) = (15) ~2 0 ±2 
11 (111), (52) = (25) ±242 ±4 ±242 
12 (3) ±42 :;2 :~42 
13 (5), (113) = (311), (212) ±42 +2 ±42 
14 (11), (213) = (312) :;4 0 ±4 

( h )  S t r u c t u r e  1 0 H ( 5 5 ) :  b r o a d e n i n g s  (~'/a(o)Aw(h 3) 
h3 

N u m b e r  1 0 M  1 0 M + I  1 0 M + 2  1 0 M + 3  1 0 M + 4  1 0 M + 5  

! ,10 3 g f f g 3 
2,7 0 k i j I 8 

3 ,8 ,15 3 h f e g 1 
4,17 0 i l I i 0 
5,6 3 f g g f 3 

9,14 0 l i i I 0 
11 0 j 1 k i 4 

12, 13 3 e g h f 1 
16 0 4 0 4 0 4 
18 3 1 3 ! 3 1 
19 3 3 3 3 3 3 

e = , / ( 5 + 4 c -  a 2) = 20.8090, f =  ,/(5 - 4 c -  a 2) = 1.1910, g = J ( 5 + 4 d  - b 2) = 2.3090, 
h =4 (5  - 4 d  - b 2) = 1.6910, i=  24(2+ 2c - a 2) = 3.6180,j  = 24(2 - 2 c -  a 2) = 0-3820, k = 
24(2+ 2d - b 2) = 2.6180, I = 24(2 - 2 d  - b 2) = 1.3820. 

( e )  S t r u c t u r e  8 H ( 4 4 ) :  b r o a d e n i n g s  Or/a(o)Aw(h 3) 
h3 

N u m b e r  8 M  8 M ± l  8 M + 2  8 M ± 3  8 M + 4  

1,10 3 2 1 2 3 
2,7 0 4 2 + 2  2 ` / 2 - 2  4 
3, 8 3 1/2(42 - 4) 2 1/2(42 + 4) 1 

4 3 1 3 1 3 
5 3 3 3 3 3 
6 0 4 0 4 0 

9,14 0 2 4 2 0 
11 0 - , /2-2 2 , / 2+2  4 

12,13 3 1 /2 (42+4)  2 1 / 2 ( 4 2 - 4 )  1 

( i )  S t r u c t u r e  1 0 H ( 5 5 ) :  p e a k  m a x i m a  (a,)/4'2)lmax(h3) 
h3 

N u m b e r  1 0 M  1 0 M ±  1 1 0 M ± 2  1 0 M ± 3  

1,10 0.067 0.02757 0-5773 3.4530 
2,7 - -  0'03343 0.1900 10.767 

3,8 ,15 0.033 0"02588 0-2886 0.7320 
4,17 - -  0.02420 0.4975 2.9758 
5,6 0.067 0.07350 0.0297 1.7810 

9,14 - -  0.06334 17.0498 1"1366 
11 - -  0.11460 8.4562 0.7854 

12,13 0.067 0.03116 0.2012 2.0925 
16 - -  0.00486 - -  0.2285 
18 0.067 0-08754 0.2292 4.1125 
19 0-067 0.00973 0.2292 0.4569 

1 0 M + 4  1 0 M + 5  

2.0410 0-2 
3.4100 0.0375 
1.1596 0-3 
! .3025 -- 
3-9568 0.2 
0.7121 
0-6512 0.075 
3.9568 0-6 

-- 0-033 
! .5708 0.6 
1.5708 0.033 
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( j )  S t r u c t u r e  1 2 H ( 6 6 ) :  s h i f t s  (4"n/ot(i))Ah3(h3) 

Table 2 (cont.) 

Z h d a n o v  symbol  
N u m b e r  o f  faul ts  1 2 M ± l  1 2 M ± 3  1 2 M ± 4  1 2 M ± 5  

1 (8) ±,/3 0 ~=43 =1=#3 
2 (9) ~:4 ±4 0 ±4 
3 (12)=(21) ±2 :t=2 0 ±2 
4 (22) :r2`/3 0 ~:2`/3 ±2`/3 
5 (10), (13) = (31) ±,/3 0 ±`/3 ~`/3 
6 (14) = (41) :~2 :¢4 ±2`/3 :~4 
7 (11), (23) = (32) ±1 ±2 :¢`/3 :el 
8 (25) = (52) ±2 ±2 ~:2`/3 :¢2 
9 (13), (1), (34) = (43) Wl w2 ±43 ~=1 

10 (17) = (71), (44) ±2`/3 0 ±2`/3 :;=2,,/3 
11 (35) = (53), (2) :;=`/3 0 :¢`/3 ±`/3 
12 (3) ±4 ~:4 0 ±4 
13 (27) = (72), (45) = (54) ~2 ±2 0 :~2 

(111) 
14 (55) ±2,/3 0 ~2x/3 ~2,/3 
15 (112)=(211),(4) :r,/3 0 ±,/3 ±,/3 

(37) = (73) 
16 (113) = (311), (212) +2 :e4 ±2,/3 ±2 

(47) = (74) 
17 (5) a:l :~2 ~:,/3 ~1 
18 (115) = (511), (313) ±1 ±2 ±,/3 ±1 

(214) = (412), (7) 
19 (215) = (512), (1,1) q=2,/3 0 ±2,./3 ±2`/3 

(314) = (413) 
20 (315) = (513), (414) ±2 :r2 0 ±2 
21 (415) = (514) ±`/3 0 ±`/3 ±,/3 
22 (515) :v2 ~:4 ±2,/3 :¢2 
23 (12), (33) 0 0 0 0 
24 (15) = (51), (24) = (42) 0 0 0 0 
25 (114) = (411), (15) = (51) 0 0 0 0 

(213)=(312) 

( k )  S t r u c t u r e  1 2 H ( 6 6 ) :  b r o a d e n i n g s  ( ¢ r / a ( i ) ) A w ( h 3 )  

h3 

N u m b e r  1 2 M + I  1 2 M + 3  1 2 M ± 4  1 2 M ± 5  

l, 15 5/2 1 3/2 5/2 
2,12 2 2 0 2 

3, 13, 20 2 2 3 2 
4,10 3 0 3 3 

5,11, 21 3/2 3 3/2 3/2 
6,8,22 2+43  2 3 2 - 4 3  

7, 9 1/2(4-` /3)  2 3/2 1/2(4+,/3) 
14, 19 1 4 3 1 

16 2 - 4 3  2 3 2+,/3 
17, 18 1/2(4+`/3) 2 3/2 1/2(4-` /3)  

23 4 4 0 4 
24 1 1 3 1 
25 3 3 3 3 

(1) Structure 12H(66): peak m a x i m a  (ot(i)/O2)Imax(h3) 
h3 

N u m b e r  1 2 M + l  1 2 M ± 3  1 2 M ± 4  

1, 15 2/5(2-` /3)  2 4 
2, 12 1/2(2-` /3)  1/4 - -  

3, 13, 20 1/2(2 - 4 3 )  1 2 
4,10 1/3(2- , /3)  - -  2 

5,11,21 2 /3(2- , /3)  2/3 4 
6, 8, 22 7 -4`/3 1 2 

7,9 2/13(5-2, /3)  1 4 
14,19 2 - ` /3  1/2 2 

16 1 5/2 2 
17,18 2/13(11-6,/3)  1 4 

23 1/4(2- , /3)  1/2 - -  
24 1 /2 (2-43)  1 1 
25 1/6(2 - , /3 )  1/3 1 

( m )  S t r u c t u r e  3 C 

Shifts  8/ ( 9x/3a ) Ah3( h3) 
Broaden ings  4~'/(453)Aw(h3) 
Peak m a x i m a  for  n o n - t w i n n i n g  faul t  

(102ot2)/ ( 2" 7 4t,b 2) lraax( h3) 
Peak m a x i m a  for  t w i n n i n g  faul t  

(102 f12)/ ( 4" 28O 2) Imax( h3) 

±1 
±1 

1 

±1 

±1 

1 2 M ± 5  

2/5(2+`/3) 
1/2(2+,/3) 
1/2(2+`/3) 
1/3(2+~/3) 
2/3(2+`/3) 

7+4`/3 
2/13(5+2`/3) 

2+`/3 
1 

2/13(11 +643) 
1/4(2+`/3) 
1/2(2+`/3) 
i /6(2+`/3)  

±2  
~:1 

1 

~:1 

( n )  S t r u c t u r e  9 R ( 1 2 ) 3 :  s h i f t s  (4zr/9a(i))Ah3(h3) 
h3 

Z h d a n o v  symbol  
of  faul ts  1 9 M ± l  9 M ± 2  9 M ± 4  

2(3) 1 +b ±d ±a  
1 (3) 2 ± d  ±a  ~b  

1 (12)=2(21) 3 ±c ~:c ±c 
1 (4) 4 ±a  :t:b ~:d 

1 (111), 2 (2) 5 ±a  ±b  ± d  
1 (5) 6 :;=c ±c  =l=c 
! (1) 7 ~:d ~:a ±b 

a = sin (zr/9) = 0"3420, b = sin (21r/9) = 0.6428, c = sin (¢r/3) = 0.8660, 
sin (41r/9) = 0.9848. 

( o )  S t r u c t u r e  9 R ( 1 2 ) 3 :  b r o a d e n i n g s  (zr/a(i))Aw(h3) 
h3 

l 9 M ± l  9 M ± 2  9 M ± 4  

1 e f g 
2,7 f g e 
3,6 h h h 
4, 5 g e f 

e = 5.5528, f =  8.2186, g = 13.2286, h = 11.25. 

(p) Structure 9R(12)3: peak maxima [102a(i)2/O2(h3)]lmax(h3) 
h3 

1 9 M ± l  9 M ± 2  9 M + 4  

1 n: 11.77 ±2.29 :~7-33 
2, 7 ±5.37 ±0.88 :¢41.60 
3, 6 :¢2.87 ±1.22 :¢10.13 
4, 5 :~2.07 ±5.02 :¢18.98 

Twinning :~4.48 + 1.91 :¢ 15.83 
faults 

( r )  S t r u c t u r e  1 2 R ( 1 3 ) 3 :  s h i f t s  (87r/9a(i))Ah3(h3) 
h3 

Z h d a n o v  symbol  
o f f a u l t s  l 1 2 M ± l  1 2 M ± 2  1 2 M ± 4  1 2 M ± 5  

3 (21) = 1 (12) 1 ±1 ±,/3 ±,/3 ±1 
1 (5) 2 ±,/3 ±,/3 :~`/3 :¢,/3 

3 (2), 1 (112) = 1 (211) 3 ±2 0 0 ±2 
1 (7) 4 ±, /3 ~`/3 ±, /3  :t:,/3 
1 (2) 5 ±1 ±,/3 :~,/3 ±1 
1 (3) 6 0 0 0 0 
I (4) 7 ±1 ±, /3 ±, /3 ~1 

1 (111), 3 (22)=  1 (22) 8 :~,/3 ±`/3 :¢`/3 ±, /3 
1 (6) 9 :¢2 0 0 :~2 

1 (1), 1 (212) 10 =¢`/3 =rd3 ±`/3 ±43  

(S)  S t r u c t u r e  1 2 R ( 1 3 ) 3 :  b r o a d e n i n g s  (47r/9a(o)Aw(h3) 
h3 

! 1 2 M ± l  1 2 M ± 2  1 2 M ± 4  1 2 M ± 5  

1 4 - ` / 3  3 5 4+` /3  
2,10 0 5 0 0 
3,9 4 6 2 4 
4, 8 5 5 5 5 
5, 7 4+`/3 3 5 4 - ` / 3  
6 6 2 2 6 

(t) Structure 12R(13)3: peak maxima [9ot(i)2/8~2(h3)]Imax(h3) 
h3 

I 1 2 M ± l  1 2 M ± 2  1 2 M ± 4  1 2 M ± 5  

I +(14-3, /3) /169 ~1/9 ±1/75 :r(14+ 3`/3)/169 
2,10 - -  :¢ 1/25 ±1/75 - -  
3,9 ± (2 - , /3 ) /16  :¢1/36 ±1/12 :~(2 +`/3)/16 
4, 8 ±(2- ` /3) /25  ~1/25 ±1/75 ~:(2+`/3)/25 
5,7 ±(7-5,/3)2/338 :~1/9 ±1/75 ~:(7 + 5`/3)2/338 

6 ±(2 - , /3 ) /36  ~1/4 +1/12 ~(2 +`/3)/36 
Twinning ±(2- ` /3 ) /16  :¢1/16 ±1/48 :r:(2 +`/3)/16 

faults 

d =  
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Table 2 (cont.) 
(u) Structure 15R(23)3: shifts (rr/9a(o)Ahs(h 3) 

h3 
Z h d a n o v  s y m b o l  

o f  fau l t s  l 1 5 M ± l 1 5 M ± 2 1 5 M ± 4 1 5 M ± 5 1 5 M + 7  
3 (31)= 2 (13),2 (7) 1 ±b ±d +g ±e ±a 

3 (12)=2(21)  2 ±d ±g ~:a a:e :~b 
3 (4) 3 ± f  ±c ~:f 0 ±c 

2(4),3(111) 4 ±g ± a  ±b ±e :~d 
2(23)=3(32) ,2 (111)  5 ±e :~e ±e :~e ±e 

3 (13) 6 ±c :~f :~c 0 :~f 
2(1) 7 ±a  :~b :~d +e ±g 
2(5) 8 :~a ±b ±d :~e :~g 

2 (112)=2 (211),3 (3) 9 ~:c ± f  ±c 0 ± f  
2 (41)=3(14)  10 ~:e ±e :~e ±e :~e 

2(2) 11 ~:g ±a ~:b :~e ±d 
3(5) ,2(6)  12 ~ f  ~c ± f  0 a:c 

3 ( i l ) = 2 ( 1 1 ) , 2 ( 2 1 2 )  13 ~:d :gg ±a ±e ±b 

a=s in(~- /15)=0.2079,  b=sin(2~r/15)=0.4067,  c=sin(31r/15)=0"5878, d =  
sin (4w/15) = 0.7431, e = sin (~r/3) = 0"8660, f =  sin (61r/15) = 0.9511, g = sin (7 ~r/15) = 
0-9945. 

(v) Structure 15R(23)3: broadenings (Tr/ct(i))Aw(h 3) 
hs 

l ±1 ±2  ± 4  ±5 ±7 

1 k m n p r 
2,13 m n r p k 
3,12 s t s u t 
4,11 n r k p m 
5,10 w w w w w 
6, 9 t s t u s 
7,8 r k m p n 

k=5.53,  m=7"63,  n=11.39,  p=12.53,  r =  13.47, s=9.72,  t=13.18, u=4.50,  w= 
11.25. 

(W)  S t r u c t u r e  1 5 R ( 2 3 ) 3 :  p e a k  m a x i m a  [102ct(i)2/~b2(h3)]gmax(h3) 
h3 

l 1 5 M ± I  1 5 M ± 2  1 5 M + 4  1 5 M + 5  1 5 M ± 7  

1 m2-03 ±4.09 ~7.19 ±3.06 :~7.85 
2,13 ;21.07 +1-84 m5.14 +3.06 :~46.54 
3,12 ~0.66 +1-37 :~9.87 ±23.70 :~8.20 
4,11 ~:0.48 + 1.31 ~30.49 ±3.06 ±24-46 
5,10 ;:0.49 ± 1.88 ~27.37 +3-79 • ! 1.25 
6, 9 ~:0-36 ±2.52 ¢5.37 ±23.70 :~ 15.07 
7, 8 :~0.34 ±7.78 ~: 16.20 ±3.06 ~: 10.98 

Twinning :~6.06 +2.78 :~7.24 +8.89 :~ 17.9 I 
faults 

where the probability a of the occurrence of deforma- 
tion faults in the 3 C structure is defined by the scheme 

1 - a  1 - a  1 - a  

__~ B _ _ q ~ C  __~ A 
A a B a C a 

C ~ A  B. 

(22) 
However in the present paper we have obtained the 
relation 

Ah 3 (h 3 = 5=1, CeOl>) = +(9x/3/8)c~(11>, (23) 

where the probability a<11> of occurrence of the single 
non-twinning faults with Zhdanov symbol (1) in the 
3C structure is defined by the scheme 

- 3 a  1 - 3 a  1 - 3 a  

B2 C3 - -  A t 
ot o~ 

- -  Ct B2 Ai Cs B 1 
ot o~ 

- -  C 2 A2  B2 

C 3 - -  A 3 B3.  

(24) 

A1 

Comparing expressions (21) and (23) we obtain 

a<!1> = (2/3)a.  (25) 

The factor 2/3 occurs in (25) because the probabilities 
a<11> and a are defined differently. To describe the 
faultiness in 3C structures the first scheme is more 
natural and convenient than the second one. By con- 
trast, for rhombohedral polytypes with period of iden- 
tity greater than 3 the Ol(jk) probabilities are more 
suitable. 

The results obtained for 9R(12)3 and 12R(13)3 
structures can be compared with results given by Lele 
(1974a, b). For the 9R(12)3 structure he obtained the 
following five types of faults: c, h, hc, hhc and 3c. 
The first three of these are non-twinning faults with 
Zhdanov symbols c = 1(3), hhc -- 2(21) and 3c = 1(5). 
The next two are twinning faults with symbols hc = 
2(2)1 and h = 1(1)2. For the 12R(13)3 Lele considered 
the following seven types of faults: hhc, c, h, cch, 4h, 
2hc and 4c. The first five of these are non-twinning 
faults with symbols hhc = 1(2), c = 1(4), 4h = 1(111), 
2hc = 1(22) and 4c-- 1(7). The next two are twinning 
faults with symbols h = 1(1)3 and cch =3(3)1. 

Comparing the equations for shifts Ah 3 of the 
reciprocal-lattice points for 9R(12)3 and 12R(13)3 
structures obtained from the tables with those given 
by Lele (1974a, b ) ,  we can see complete conformity. 
The shifts of reciprocal-lattice points are unaffected 
by twinning faults. For non-twinning faults the 
coefficients determining the magnitude of shifts and 
the direction of shifts given by Lele (1974a) conform 
with the data in our tables. The coefficients given by 
Lele (1974a, b) can be obtained in the following way: 

0 . 3949=a / c ,  0-7422= b / c  and 1 .1372=d/c .  

(26) 

Comparing the expressions for broadening Aw of the 
reciprocal-lattice points calculated from the tables for 
9R(12)3 and 12R(13)3 structures with expressions 
given by Lele (1974a, b), we can see some dis- 
crepancies. 

Thus we can see that the general theory published 
in this paper gives the same results as obtained earlier 
for particular simple cases. However, the present 
theory allows easy calculations for all more compli- 
cated cases. The possibility of quick identification of 
the type of fault without exact measurements of X-ray 
diffraction patterns is the advantage of our tables. It 
is sufficient to determine the reflexions which are 
unaffected by faults and reflexions which are broad- 
ened and shifted in particular directions. Comparing 
such simple measurements with the tables we can 
identify the type of faults in the vast majority of cases, 
when the diffraction effects are distinct. Examples of 
this analysis will be given in a forthcoming paper. It 
seems, however, that the analysis of fault structures 
is not possible in the case of crystals which have 
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total disorder (continuous diffuse lines instead of 
reflexions on X-ray diffraction photographs). 

Moreover, we must pay attention to the fact that 
the different types of faults exert a similar influence 
on different points of the reciprocal lattice. Thus it 
is not possible to distinguish between some types of 
faults on the basis of the above parameters. One could 
try also to find expressions for measurable parameters 
describing lattice-point asymmetry and changes in 
the integrated intensity, as was done by Prasad & 
Lele (1971). However, these changes and peak asym- 
metry are usually too small to be estimated with 
sufficient accuracy. Thus peak shifts and half widths 
are recognized to be the best measures of faultiness. 
This was shown by Pandey & Krishna (1976) for the 
6H(33) structure. 

The limitations of our theory and inaccuracy in the 
results which follow from the assumption of small 
values of OLjk are the next problem for discussion. We 
will show that this assumption does not limit the 
generality of the above theory because only small 
values of OLjk have physical sense. In order to jtistify 
the above statement let us recall the definition of 
probability ajk. It is equal to the ratio of the number 
of layers followed by faults of a particular 
type to the full number of layers in the examined 
sequence. For example, in the following sequence 
of an 8H(44) structure with stacking faults 
[(4433443344443344443344) - in Zhdanov symbols] 

we have a(33) = 4/80 = 0.05. It is clear that considera- 
tion of these faults as the (33) type in 8H(44) struc- 
tures makes sense only for o~(33)< 0" 1. For a~33)> 0" 1 
the frequency of the occurrence of faults of (33) type 
is so great that the Zhdanov symbols (33) must be 
united in groups and it is necessary to interpret this 
sequence as a 6H(33) structure with stacking faults 
of (4) type. For example, it is necessary to interpret 
the sequence (33433433433334) as a 6H(33) structure 
with o~(4 ) = 4/46 but not as an 8H(44) structure with 
tx(33)=5/46. We expect that on X-ray diffraction 
photographs from the structure with this sequence 
the peak maxima will occur near the positions corre- 
sponding to those for a 6H(33) structure. 

The assumption of a random distribution of single 
faults does not limit our theory either. In general, 
when this assumption is not fulfilled another poly- 
typic structure is formed. 
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Abstract 

An algorithm is implemented to determine the form 
and phase shift for inconsistent type II quadrupoles 
for any space group having glide or screw-axis trans- 
lations which are not a consequence of lattice center- 
ing. Cumulatively there are only six different Miller 
index restrictions and nine different phase shift forms 
common to all space groups of orthorhombic or lower 
symmetry. A similar analysis has been performed for 
a newly discovered type III class of quadrupoles. The 
configuration of the phase connections among the 
four triples of the type III quadrupole is different 
from the common configuration previously described 
for both normal (type I) and inconsistent (type II) 

0108-7673/88/050657-05503.00 

quadrupoles. A knowledge of these constraint condi- 
tions for type II and III quadrupoles greatly simplifies 
a procedure for generating these relationships. 

Introduction 

A quadrupole has been defined as a relationship 
among four interdependent three-phase invariants, 

~ i  = ~h -- ~k + ¢~k-h 

~2 = ~k-- ¢h + ~h-k (I) 
¢~3 = ~01- ~)h "[- ~0h-! 

(I)4 = --~Ok-h -- ~)l-k -- ~ h - l ,  
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